Search results for "Coronal Mass Ejections"

showing 10 items of 23 documents

Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011

2016

We present study of the complex event consisting of several solar wind transients detected by Advanced Composition Explorer (ACE) on 4 -- 7 August 2011, that caused a geomagnetic storm with Dst$=-$110 nT. The supposed coronal sources -- three flares and coronal mass ejections (CMEs) occurred on 2 -- 4 August 2011 in the active region (AR) 11261. To investigate the solar origin and formation of these transients we studied kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and the differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic fie…

010504 meteorology & atmospheric sciencesMHDSolar windAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysics01 natural sciencesPhysics - Space PhysicsModelsIonization0103 physical sciencesCoronal mass ejectionQB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesGeomagnetic stormPhysicsAstronomy and Astrophysics3rd-DASPlasmaCoronaSpace Physics (physics.space-ph)Solar windQC PhysicsMagnetic field13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsCoronal mass ejectionsMagnetohydrodynamicsSolar Physics
researchProduct

Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.

2021

Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…

010504 meteorology & atmospheric sciencesSpace weather01 natural scienceslaw.inventionDIMMINGSPhysics - Space PhysicslawRECONNECTIONCoronal mass ejectionQB Astronomy010303 astronomy & astrophysicsCoronagraphQCMISSIONQBSTREAMERSUN3rd-DASLow-coronal signaturesMagnetic StormsAstrophysics - Solar and Stellar AstrophysicsMagnetic stormsPhysical SciencesCURRENT SHEETSpace WeatherGeologyCoronal Mass EjectionsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreSpace weatherSOLAR-WIND HELIUMMAGNETIC CLOUDSFOS: Physical sciencesSolar cycle 24Astronomy & AstrophysicsArticleCurrent sheet0103 physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGeomagnetic stormScience & TechnologyAstronomyAstronomy and AstrophysicsSpace Physics (physics.space-ph)EVOLUTIONEarth's magnetic fieldQC Physics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Low-Coronal SignaturesCoronal mass ejectionsMAGNETOHYDRODYNAMIC MODELSInterplanetary spaceflightSpace science reviews
researchProduct

A space weather tool for identifying eruptive active regions

2019

Funding: UK Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214); UK STFC via the Consolidated Grant SMC1/YST025 and SMC1/YST037 (S.L.Y.); UK STFC and the ERC (SynergyGrant: WHOLE SUN, Grant Agreement No. 810218) for financial support (DHM). One of the main goals of solar physics is the timely identification of eruptive active regions. Space missions such as Solar Orbiter or future Space Weather forecasting missions would largely benefit from this achievement.Our aim is to produce a relatively simple technique that c…

010504 meteorology & atmospheric sciencesSpace weatherSolar magnetic fieldsFOS: Physical sciencesSpace weather01 natural sciences3rd-NDASSolar coronal mass ejections0103 physical sciencesRegional sciencemedia_common.cataloged_instanceQB AstronomyEuropean union010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesmedia_commonQBPhysicsHorizon (archaeology)European researchAstronomy and AstrophysicsSolar active region magnetic fieldsSolar active regionsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science
researchProduct

Measuring the electron temperatures of coronal mass ejections with future space-based multi-channel coronagraphs: a numerical test

2018

Context. The determination from coronagraphic observations of physical parameters of the plasma embedded in coronal mass ejections (CMEs) is of crucial importance for our understanding of the origin and evolution of these phenomena. Aims. The aim of this work is to perform the first ever numerical simulations of a CME as it will be observed by future two-channel (visible light VL and UV Ly-α) coronagraphs, such as the Metis instrument on-board ESA-Solar Orbiter mission, or any other future coronagraphs with the same spectral band-passes. These simulations are then used to test and optimize the plasma diagnostic techniques to be applied to future observations of CMEs. Methods. The CME diagno…

010504 meteorology & atmospheric sciencesSun: coronal mass ejections (CMEs)Plasma parametersT-NDASContext (language use)Astrophysics01 natural sciencessymbols.namesakeMethods: data analysis0103 physical sciencesRadiative transferCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsQB Astronomydata analysis [Methods]010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesPhysicsUV radiation [Sun]numerical [Methods]Methods: numericalAstronomy and AstrophysicsPlasmaSun: UV radiationPolarization (waves)coronal mass ejections (CMEs) [Sun]Computational physicsQC PhysicsPlasmasSpace and Planetary SciencePhysics::Space PhysicssymbolsMagnetohydrodynamicsDoppler effectAstronomy & Astrophysics
researchProduct

Models and data analysis tools for the Solar Orbiter mission

2020

All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbe…

010504 meteorology & atmospheric sciencescorona [Sun]Solar windAstrophysics[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]7. Clean energy01 natural scienceslaw.inventionData acquisitionlawCoronal mass ejectiongeneral [Sun]QB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSun: magnetic fieldsQCComputingMilieux_MISCELLANEOUSQBPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]3rd-DASenergetic particlesSolar windCORONAL MASS EJECTIONSnumerical modelingmagnetic fields [Sun]solar windPhysics::Space PhysicsSystems engineeringAstrophysics::Earth and Planetary Astrophysicsatmosphere [Sun]fundamental parameters [Sun]Sun: generalFORCE-FREE FIELDSun: fundamental parametersSolar radiusContext (language use)STREAMER STRUCTUREOrbiter0103 physical sciencesOPTIMIZATION APPROACH[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]POLARIZATION MEASUREMENTSSun: Solar wind3-DIMENSIONAL STRUCTURE0105 earth and related environmental sciencesSpacecraftbusiness.industrySun: corona[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]solar coronaMAGNETIC-FLUX ROPESAstronomy and AstrophysicsSHOCKS DRIVEN115 Astronomy Space scienceSPECTRAL-LINESQC Physics13. Climate actionSpace and Planetary SciencebusinessHeliosphereSun: atmosphereELECTRON-DENSITY
researchProduct

Reconstruction of the Parker spiral with the Reverse in situ data and MHD APproach - RIMAP

2021

The reconstruction of plasma parameters in the interplanetary medium is very important to understand the interplanetary propagation of solar eruptions and for Space Weather application purposes. Because only a few spacecraft are measuring in situ these parameters, reconstructions are currently performed by running complex numerical Magneto-hydrodynamic (MHD) simulations starting from remote sensing observations of the Sun. Current models apply full 3D MHD simulations of the corona or extrapolations of photospheric magnetic fields combined with semi-empirical relationships to derive the plasma parameters on a sphere centered on the Sun (inner boundary). The plasma is then propagated in the i…

Atmospheric Science010504 meteorology & atmospheric sciencesSpace weatherSolar windInterplanetary mediumSpace weatherlcsh:QC851-99901 natural sciencesHeliosphere0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsModelingCoronal mass ejections; Heliosphere; Interplanetary medium; Modeling; Solar wind; Space weatherComputational physicsSolar windSpace and Planetary SciencePhysics::Space PhysicsCoronal mass ejectionslcsh:Meteorology. ClimatologyHeliospheric current sheetAstrophysics::Earth and Planetary AstrophysicsMagnetohydrodynamicsInterplanetary spaceflightHeliosphereInterplanetary medium
researchProduct

Uncertainties in polarimetric 3D reconstructions of coronal mass ejections

2015

P.P. acknowledges STFC for financial support. Date of Acceptance: 21/01/2015 Aims. The aim of this work is to quantify the uncertainties in the three-dimensional (3D) reconstruction of the location of coronal mass ejections (CMEs) obtained with the so-called polarization ratio technique. The method takes advantage of the different distributions along the line of sight of total (tB) and polarized (pB) brightnesses emitted by Thomson scattering to estimate the average location of the emitting plasma. This is particularly important to correctly identify of CME propagation angles and unprojected velocities, thus allowing better capabilities for space weather forecastings. Methods. To this end, …

Electron densitycorona [Sun]Sun: coronal mass ejections (CMEs)NDASDensityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsSpace weatherpolarimetric [Techniques]Position (vector)Coronal mass ejectionQCSolar and Stellar Astrophysics (astro-ph.SR)PhysicsLine-of-sightSun: coronaPlane (geometry)Techniques: polarimetricAstronomy and Astrophysicscoronal mass ejections (CMEs) [Sun]ViewpointsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsHaloCenter of mass
researchProduct

First Determination of 2D Speed Distribution within the Bodies of Coronal Mass Ejections with Cross-correlation Analysis

2019

The determination of the speed of Coronal Mass Ejections (CMEs) is usually done by tracking brighter features (such as the CME front and core) in visible light coronagraphic images and by deriving unidimensional profiles of the CME speed as a function of altitude or time. Nevertheless, CMEs are usually characterized by the presence of significant density inhomogeneities propagating outward with different radial and latitudinal projected speeds, resulting in a complex evolution eventually forming the Interplanetary CME. In this work, we demonstrate for the first time how coronagraphic image sequences can be analyzed with cross-correlation technique to derive 2D maps of the almost instantaneo…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesDistribution (number theory)Sun: coronal mass ejections (CMEs)FOS: Physical sciencesAstrophysicspolarimetric [Techniques]magnetohydrodynamics (MHD)01 natural sciences0103 physical sciencesCoronal mass ejectionQB AstronomyAstrophysics::Solar and Stellar Astrophysicsmedia_common.cataloged_instanceEuropean uniondata analysis [Methods]010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QCQB0105 earth and related environmental sciencesmedia_commonPhysicsUV radiation [Sun]Horizon (archaeology)Cross correlation analysisDASAstronomy and AstrophysicsSun: UV radiationmethods: data analysiscoronal mass ejections (CMEs) [Sun]techniques: polarimetricQC PhysicsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsThe Astrophysical Journal
researchProduct

Hydrogen non-equilibrium ionisation effects in coronal mass ejections

2020

This research has received funding from the Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214). D.H.M. would like to thank both the UK STFC and the ERC (Synergy grant: WHOLE SUN, grant Agreement No. 810218) for financial support. D.H.M. and P.P. would like to thank STFC for IAA funding under grant number SMC1-XAS012. This work used the DiRAC@Durham facility man-aged by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk. The equipment was funded by BEIS capital fundin…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesHydrogenSun: coronal mass ejections (CMEs)FOS: Physical scienceschemistry.chemical_elementAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences7. Clean energycoronal mass ejections (CMEs) [un]Ionization0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsQB Astronomydata analysis [Methods]Sun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QCQB0105 earth and related environmental sciencesPhysicsUV radiation [Sun]Sun: coronaAstronomy and Astrophysics3rd-DASPlasmaMagnetic fluxSolar windQC PhysicsAstrophysics - Solar and Stellar AstrophysicschemistrySpace and Planetary SciencePhysics::Space PhysicsPlasma diagnosticsMagnetohydrodynamicsAstronomy & Astrophysics
researchProduct

Determining the source and eruption dynamics of a stealth CME using NLFFF modelling and MHD simulations

2021

Coronal mass ejections (CMEs) that exhibit weak or no eruption signatures in the low corona, known as stealth CMEs, are problematic as upon arrival at Earth they can lead to geomagnetic disturbances that were not predicted by space weather forecasters. We investigate the origin and eruption of a stealth event that occurred on 2015 January 3 that was responsible for a strong geomagnetic storm upon its arrival at Earth. To simulate the coronal magnetic field and plasma parameters of the eruption we use a coupled approach. This approach combines an evolutionary nonlinear force-free field model of the global corona with a MHD simulation. The combined simulation approach accurately reproduces th…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesSun: coronal mass ejections (CMEs)FOS: Physical sciencesAstrophysics01 natural sciencesPhysics::GeophysicsAeronauticsMethods: data analysis0103 physical sciencesQB AstronomyAstrophysics::Solar and Stellar Astrophysicsdata analysis [Methods]Sun: magnetic fields010303 astronomy & astrophysicsQCSolar and Stellar Astrophysics (astro-ph.SR)QB0105 earth and related environmental sciencesPhysicsAstronomy and Astrophysics3rd-DAScoronal mass ejections (CMEs) [Sun]QC PhysicsAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsAstronomy & Astrophysics
researchProduct